究竟如何才能把数据转化为利润呢? 对大多数公司来说, 有两种选择, 一是数据导向的流程, 二是数据导向的产品。
第一、以数据为导向的业务流程:
好的数据科学家可以从帮助企业分析产品到建立预测模型、 分析将来趋势、 以维护现有的决策, 比如哪些产品受欢迎? 为什么? 哪些产品用户不喜欢?下面是一些具体的例子:
(1)如果你是销售软件即服务(SaaS)应用, 数据科学家可以帮助你分析高端客户的特征, 比如他们转化的渠道, 他们的基本共性(年龄, 性别, 收入水平, 地域等),以及他们使用你的应用的特别方式等。 这样, 你可以更加有针对性的设计你的产品功能, 推出针对性的广告,优化市场推广渠道, 从而提高你的利润率。
(2)数据科学家可以帮助你分析某类产品的价格对其他类别产品销量的影响, 从而帮助你优化你的整个价格体系。
(3)数据科学家可以基于历史数据, 建立一个准确的预测模型。 比如如百货公司Target, 能够确定哪些顾客是怀孕的妇女, 或者像一些保险公司一样, 能够预测哪些来咨询的潜在客户最有可能转化为客户。
(4)数据科学家还能够让你更好的利用现有的数据分析运营结果。 比如, 数据科学家会建议你把你的市场营销数据, 和网站访问日志以及交易数据进行关联, 从而能够衡量市场推广活动的有效性。
第二、以数据为导向的产品:
除了以数据为导向的流程外, 还可以把利用数据来丰富产品的功能。 有的公司, 还把数据专门打包成为一个产品来销售。
下面举一些实际的例子来说明数据如何使产品更加智能, 更加符合用户需求:
(1)为了提高广告平台的点击率, 广告平台通过分析广告播放媒体, 广告本身, 以及用户的行为。 把广告展现给最合适的用户。
(2)电子商务网站, 通过推荐系统中的数据分析和机器学习, 提高用户对推荐产品的购买可能性。
(3)媒体网站通过分析用户特征, 给不同的用户展现不同的内容网页, 提高用户在网站的停留时间, 从而获得更多的广告收入。
(4)视频发布平台通过分析用户的观看和互动行为, 给视频制作者关于用户喜好的各种反馈, 从而制作出更加满足用户喜好的视频。 这是一个间接增加收入的例子。 通过数据分析, 来提高视频平台的受欢迎程度。